読者です 読者をやめる 読者になる 読者になる

予測モデルのパイプライン作成・ハイパーパラメータ・チューニングの自動化に関する資料集

2015年のNIPS以降のものをメモしています。

論文リスト

Efficient and robust automated machine learning.

papers.nips.cc Feurer, Matthias, et al. "Efficient and robust automated machine learning." Advances in Neural Information Processing Systems. 2015.

A review of automatic selection methods for machine learning algorithms and hyper-parameter values.

link.springer.com Luo, Gang. "A review of automatic selection methods for machine learning algorithms and hyper-parameter values." Network Modeling Analysis in Health Informatics and Bioinformatics 5.1 (2016): 1-16.

PredicT-ML: a tool for automating machine learning model building with big clinical data.

hissjournal.biomedcentral.com Luo, Gang. "PredicT-ML: a tool for automating machine learning model building with big clinical data." Health Information Science and Systems 4.1 (2016): 1.

Aslib: A benchmark library for algorithm selection.

ASlib: A benchmark library for algorithm selection

Bischl, Bernd, et al. "Aslib: A benchmark library for algorithm selection." Artificial Intelligence 237 (2016): 41-58.

FLASH: fast Bayesian optimization for data analytic pipelines

[1602.06468] FLASH: Fast Bayesian Optimization for Data Analytic Pipelines

Zhang, Yuyu, et al. "FLASH: fast Bayesian optimization for data analytic pipelines." arXiv preprint arXiv:1602.06468 (2016).

Sequential model-based optimization for general algorithm configuration.

Sequential Model-Based Optimization for General Algorithm Configuration - Springer

Sequential model-based optimization for general algorithm configuration

SMAC – Machine Learning for Automated Algorithm Design

Active network alignment: a matching-based approach, arXiv preprint arXiv:1610.05516 (2016).

[1610.05516] Active network alignment: a matching-based approach

Eric Malmi, Evimaria Terzi, Aristides Gionis, "Active network alignment: a matching-based approach"

github.com

ベイジアン最適化について

後で調べる予定。とりあえず以下の方が入門の資料をまとめてくれていました。

qiita.com