読者です 読者をやめる 読者になる 読者になる

バンディットアルゴリズムの復習6:トンプソン抽出(ThompsonSampling)

概要 コード ログ出力 アームが保持する変数 アーム選択部分 なぜか日本語の記事があまりない。 概要 以前ソフトマックス法を 実行した時、期待値最大が見込めるアームは指数分布に基づいて決定していた。 このアームkの期待値E_kがアームごとに何らかの事前…

バンディットアルゴリズムの復習5:Combinatorial bandits

前回 matroid bandit やりたいこと Matroid Augmentation property Modular Function Maximum-weight basis of the matroid アルゴリズム:Optimistic Matroid Maximization 問題設定 アルゴリズム詳細 元論文 その他関連論文 書きかけ、後ほど各アルゴリズ…

バンディットアルゴリズムの復習4:Contextual Bandit

前回 Contextual Bandit スライド 説明 各アルゴリズム外観 EXP4 Epoch-Greedy LinUCB Thompson sampling for Contextual Bandits HyperTS・HyperTSFB 次回 書きかけ、後ほど各アルゴリズムの説明や実験など追加予定。 →水曜夜あたり→土日あたり 前回 UCB,そ…

バンディットアルゴリズムの復習3:UCB(Upper Confidence Bound)

前回 UCB(Upper Confidence Bound) UCBの説明 理論的な説明 UCBのアルゴリズム アームの定義 Arm0: ベルヌーイ Arm1: 適当に作った分布 実験 Arm0: ベルヌーイ Arm1: 適当に作った分布 次回 参考文献 前回 ε-Greedy+softmaxについてやった。 UCB(Upper Confi…

バンディットアルゴリズムの復習2:softmax

前回 Softmax Softmaxによるアーム選択 Boltzmann分布(Gibbs 分布) Softmaxのコード アーム選択部分 実験 アームの定義 Arm0: ベルヌーイ Arm1: 適当に作った分布 実験結果 Arm0: ベルヌーイの場合 Arm1: 適当に作った分布の場合 次回:UCB 参考文献 前回 ε-G…

バンディットアルゴリズムの復習1:epsilon-Greedy

A/B テスト epsilon-Greedy アルゴリズム 説明 epsilon-Greedy アルゴリズムコード 実験(ベルヌーイ分布のアーム) アームの定義 実行結果 実験(ペナルティが大きいアームがあるケース) アームの定義 実験結果 実験(アームの分布が時間によって変化する場合) …

強化学習の資料メモ2:多腕バンディット問題

基本の内容 各種定式化 Exploration/Exploitation Dilemma Stationary Problem(定常なケース) Action-Value Methods 行動選択の戦略 greedy(貪欲) ε-Greedy Soft-max action selection Non-stationary Problem(非定常なケース) アームの行動戦略 Gradient-Ba…

強化学習の資料メモ1:基本

強化学習の基本 Introduction to Reinforcement Learning with Function Approximation Temporal-Difference Learning Bellman expectation equation off-policy Function approximation ε-greedy policy Model-based reinforcement learning 活用と探索のジ…

バンディットアルゴリズムの資料・論文のめも

導入 バンディットアルゴリズム入門と実践 I’m a bandit Thompson Sampling アルゴリズム バンディット問題の各定式化について Introduction to Bandits: Algorithms and Theory 応用例:レコメンデーション 論文 Some aspects of the sequential design of …